Author Affiliations
Abstract
1 Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, P. R. China
2 Department of Pathology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
3 Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, P. R. China
4 Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors arising in the digest tract. It brings a challenge to diagnosis because it is asymptomatic clinically. It is well known that tumor development is often accompanied by the changes in the morphology of collagen fibers. Nowadays, an emerging optical imaging technique, second-harmonic generation (SHG), can directly identify collagen fibers without staining due to its noncentrosymmetric properties. Therefore, in this study, we attempt to assess the feasibility of SHG imaging for detecting GISTs by monitoring the morphological changes of collagen fibers in tumor microenvironment. We found that collagen alterations occurred obviously in the GISTs by comparing with normal tissues, and furthermore, two morphological features from SHG images were extracted to quantitatively assess the morphological difference of collagen fibers between normal muscular layer and GISTs by means of automated image analysis. Quantitative analyses show a significant difference in the two collagen features. This study demonstrates the potential of SHG imaging as an adjunctive diagnostic tool for label-free identification of GISTs.
Multiphoton imaging two-photon excited fluorescence second-harmonic generation gastrointestinal stromal tumors 
Journal of Innovative Optical Health Sciences
2023, 16(5): 2350007
Author Affiliations
Abstract
1 Institute of Laser and Optoelectronics Technology Fujian Provincial Key Laboratory for Photonics Technology Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education Fujian Normal University, Fuzhou 350007, P. R. China
2 Department of Pathology The Affiliated Union Hospital Fujian Medical University, Fuzhou 350001, P. R. China
3 Department of Colorectal Surgery The Affiliated Union Hospital Fujian Medical University, Fuzhou 350001, P. R. China
Precisely distinguishing between hyperplastic and adenomatous polyps and normal human colonic mucosa at the cellular level is of great medical significance. In this work, multiphoton laser scanning microscopy (MPLSM) was used to obtain the high-contrast images and the morphological characteristics from normal colonic mucosa, hyperplastic polyps and tubular adenoma. By integrating the length and area measurement tools and computing tool, we quantified the difference of crypt morphology and the alteration of nuclei in normal and diseased human colonic mucosa. Our results demonstrated that the morphology of crypts had an obvious tendency to cystic dilatation or elongated in hyperplastic polyps and tubular adenoma. The content and number of mucin droplets of the scattered goblet cells had a piecemeal reduction in hyperplastic polyps and a large decrease in tubular adenoma. The nuclei of epithelial cells might be elongated and pseudostratified, but overt dysplasia was absent in hyperplastic polyps. Nevertheless, the nuclei showed enlarged, crowded, stratified and a rod-like structure, with loss of polarity in tubular adenoma. These results suggest that MPLSM has the capacity to distinguish between hyperplastic and adenomatous polyps and normal human colonic mucosa at the cellular level.
Normal colonic mucosa hyperplastic polyps tubular adenoma 
Journal of Innovative Optical Health Sciences
2014, 7(1): 1350056

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!